
The formal derivation of an exact series expansion for the principal Schottky–Nordheim barrier

function v, using the Gauss hypergeometric differential equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 395301

(http://iopscience.iop.org/1751-8121/41/39/395301)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/39
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 395301 (9pp) doi:10.1088/1751-8113/41/39/395301

The formal derivation of an exact series expansion for
the principal Schottky–Nordheim barrier function v,
using the Gauss hypergeometric differential equation

Jonathan H B Deane1 and Richard G Forbes2

1 Department of Mathematics, Faculty of Engineering and Physical Sciences,
University of Surrey, Guildford GU2 7XH, UK
2 Advanced Technology Institute (X1), Faculty of Engineering and Physical Sciences, University
of Surrey, Guildford GU2 7XH, UK

E-mail: J.Deane@surrey.ac.uk and r.forbes@ieee.org

Received 23 April 2008, in final form 30 July 2008
Published 29 August 2008
Online at stacks.iop.org/JPhysA/41/395301

Abstract

The standard theory of Fowler–Nordheim tunnelling and cold field electron
emission (CFE) employs a mathematical function v, sometimes called the
principal field emission elliptic function, but better called the principal
Schottky–Nordheim barrier function. This function arises when the simple-
JWKB (Jeffreys–Wentzel–Kramers–Brillouin) method is applied to solve the
Schrödinger equation approximately, for the image-rounded tunnelling barrier
introduced by Schottky and then used by Nordheim in late 1928. An exact
series expansion was recently found for v, as a function of a complementary
elliptic variable l′ equal to y2, where y is the Nordheim parameter. The
expansion was originally found by using an algebraic manipulation package.
It was subsequently discovered that v(l′) is a particular solution of the ordinary
differential equation (ODE) l′(1 − l′) d2v/dl′2 = (3/16)v. This ODE is
now recognized to be a special case of the Gauss hypergeometric differential
equation. This paper uses known special-case solutions of the hypergeometric
equation to formally derive the series expansion for v(l′). It notes how to
derive the defining ODE, and then uses an 1876 result from Cayley to derive the
boundary condition that dv/dl′ satisfies as l′ tends to zero. It then establishes
the series expansion for v(l′), by applying this and the boundary condition
v(0) = 1. This mathematical derivation underpins earlier results, including
good approximate expressions for v(l′). Its outcome proves that terms involving
ln l′ are part of a mathematically correct solution, but fractional powers of l′

are not. It also implies that simple Taylor-expansion methods cannot easily
generate good approximation formulae valid over the whole range 0 � l′ � 1;
this may also apply to barriers of other shapes. This derivation should bring
closure to the particular line of mathematical analysis of CFE theory initiated
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by Nordheim in 1928. It is hoped that the derivation might also serve as a
model for analysing other tunnelling-barrier problems.

PACS numbers: 79.70.+q, 02.60.Lj

1. Introduction

1.1. General background

Fowler–Nordheim (FN) tunnelling [1] is electric-field-induced electron tunnelling from a solid
or liquid emitter through a roughly triangular barrier. When the emission barrier is strong
and the penetration coefficient is small, there is a low-temperature emission regime (including
room temperature) known as cold field electron emission (CFE). Tunnelling and CFE are
processes of significant technological interest, in particular for the prevention of vacuum
breakdown, the development of cold-cathode electron sources and internal electron transfer
processes in some electronic devices.

In particular, most forms of high-resolution electron microscope use some type of field
emission source, because these have small optical size and are optically very bright. These
sources are crucial to many aspects of nanotechnology, because high-resolution electron
microscopes are one of the tools that enable us to ‘see’ at the nanoscale. We believe it
appropriate that the mathematics underlying the physics of FN tunnelling should be set out to
a standard comparable with that deployed in other basic quantum-mechanical contexts. This
paper is part of a process of putting in place what we regard as some necessary links and
proofs.

It would have been better if the proof presented here could have been achieved 80 years
ago, when the mathematical problem addressed here was first formulated [2], or more than
50 years ago, when a correct numerical solution was first found, by integration using early
computers [3]. However, the analytical proof reported here has not previously been available.

The original FN treatment [1] used an exact triangular barrier. This barrier shape is
physically unrealistic. Thus, many later treatments modelled tunnelling as taking place
through the image-rounded mathematical barrier introduced by Schottky [4] and used by
Nordheim [2], called here the ‘Schottky–Nordheim (SN) barrier’. For the SN barrier, the
variation in electron energy M with distance z is (by definition) given by

M(z) = h − eFz − e2/16πε0z, (1)

where e is the elementary positive charge, F is an electric field that defines the barrier, h is
the barrier height when F = 0 and ε0 is the electric constant. F is independent of z and, by
convention, is taken as a positive quantity.

For a barrier of this shape, it is mathematically impossible to solve the one-dimensional
Schrödinger equation exactly in any simple closed form (see [5]). Thus, normal
practice has been to use the so-called simple-JWKB (Jeffreys–Wentzel–Kramers–Brillouin)
approximation, developed initially by Jeffreys [6], to derive the following (approximate)
expression for the tunnelling probability D:

D ≈ exp[−v∗bh3/2/F ]. (2)

Here, b[≡(8π/3)(2m)1/2/ehP] is the second FN constant as usually defined (e.g., in [7]),
where m is the electron mass in free space and hP is Planck’s constant. v is a mathematical
function, well known in field emission, that acts (in the tunnelling exponent) as the barrier-
shape correction factor [7] for this barrier. Although v is sometimes called the ‘principal field
emission elliptic function’, a better name is the ‘principal Schottky–Nordheim barrier function’
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[7], because v applies specifically to the SN barrier. In equation (2), v∗ is the particular value
of v that corresponds to a barrier defined by particular values of the parameters h and F.

Historically [3], v has been expressed as a function of a single mathematical parameter y

introduced by Nordheim [2], and a formula has been available to obtain the value of y from
the values of h and F. Recently [7], however, it has been argued strongly that the natural
mathematical variable to use as the argument of v is the so-called complementary elliptic
variable l′. This is equal to y2 and is defined by

l′ ≡ [(1 − m)/(1 + m)]2, (3)

where m is the ‘elliptic parameter’ used in modern elliptic-function theory and defined in
[8] (also see (9)). The primed symbol l′ was chosen, following a normal convention in
elliptic-function theory, because l′ is a ‘complementary’ variable in the sense that l′ → 0 as
m → 1.

Integration of (2) over all travelling electron states occupied in the emitter at 0 K leads,
for a free-electron model of the emitter, to the so-called standard FN-type equation for the
emission current density J :

J = t−2
F aφ−1F 2 exp[−vFbφ3/2/F ], (4)

where φ is the local work-function and a[≡e3/8πhP] is the first FN constant as usually defined
[7]. Here, t is a mathematical function defined [7] by

t (l′) = v(l′) − (4/3)l′dv/dl′, (5)

and vF and tF are values of v and t that apply to a barrier for which the zero-field height (i.e.,
height for zero applied field F) is φ. Equation (4) was developed by Murphy and Good [9]
from earlier work; its derivation has been reworked by Forbes and Deane [7], using l′ rather
than y. When vF and tF are evaluated, l′ is set equal to the physical ‘scaled barrier field’ f

defined by f = F/Fφ , where Fφ is the barrier field necessary to reduce to zero a tunnelling
barrier initially of height φ. Approximations for the function v and related functions have
played a large role in the analysis of experimental CFE data for the last 50 years.

1.2. Mathematical context

Historically, definitions of v have been framed either in terms of an integral derived from the
simple-JWKB treatment of the tunnelling barrier [7, 9], or in terms of a derived expression
[9, 10] (see (10)) involving the complete elliptic integrals [8] K and E. But recently an explicit
series expansion (42) was discovered [7, 11] for v(l′), by using the computer algebra package
MAPLE to expand the definition involving K and E.

Numerical estimates of v(l′) made using MAPLE agreed with values obtained by
numerical evaluation of the relevant JWKB integral, to better than 12 decimal places, showing
both methods to be mathematically sound. We subsequently found algebraic formulae that
reproduced the MAPLE result (see [7], appendix A). However, manual derivation of higher
order terms in the series was excessively laborious; also, this method does not bring out the
underlying mathematics.

Knowing the form of the exact expansion for v(l′) enabled us to develop new
approximation formulae for v(l′) and dv/dl′. These have absolute error |ε| < 8 × 10−10, and
substantially outperform earlier numerical approximations of equivalent complexity [12]. The
form of the exact expansion also explains the mathematical success of the simple approximation
formula [7, 11]

v(l′) ≈ 1 − l′ + (1/6)l′ ln l′. (6)

This formula has the merits that it is exact at l′ = 0 and l′ = 1, and (when assessed over the
whole range 0 � l′ � 1) has absolute error |ε| < 0.0025, thereby outperforming all existing
formulae of equivalent complexity. Formula (6) seems likely to have a considerable impact in
CFE theory [7, 13, 14]. We have been interested in the mathematical origin of these successes.
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In seeking deeper understanding, we established [7] that v(l′) is a particular solution of
the ordinary differential equation (ODE):

l′(1 − l′)
d2W

dl′2
= 3

16
W, (7)

subject to the boundary condition v(0) = 1 and a second boundary condition derived below.
It is possible to treat (7) as an equation of mathematical physics in own right and to derive

two independent solutions from first principles, using the method of Frobenius. We have
confirmed [15] that this leads correctly to (42). However, we have now recognized1 that (7) is
a special case of the Gauss hypergeometric differential equation

l′(1 − l′)
d2W

dl′2
+ [γ − (α + β + 1)l′]

dW

dl′
− αβW = 0, (8)

in which the Gauss coefficients take the values α = −3/4, β = −1/4, γ = 0. Independent
solutions for this special case are known (e.g., [8]), so it is more appropriate to start from
these.

This paper aims to record, for archival purposes, the formal mathematical derivation
of expansion (42). Section 2 recapitulates the derivation of (7). Section 3 establishes the
boundary conditions that v(l′) must satisfy. Section 4 uses a well-defined form [8] for the
independent solutions of (7) to establish the series expansion for v(l′). Section 5 provides
discussion.

2. Derivation of defining equation

The derivation of (7) was outlined in [7]; for completeness here, we give the proof in slightly
more detail. The complete elliptic integrals of the first (K) and second (E) kinds can be defined
in terms of the elliptic parameter m by [8]

K(m) =
∫ π/2

0

dφ√
1 − m sin2 φ

and E(m) =
∫ π/2

0

√
1 − m sin2 φ dφ. (9)

Equation (26a) in [10] gives a formula for v(y), originally derived by Murphy and Good
[9]:

v(y) = (1 + y)1/2[E(m(y)) − yK(m(y))], (10)

where m here is the parameter denoted by m∗ in [10]. Comparison of definition (3) here with
definition (26b) in [10] confirms that y ≡ √

l′, so—expressed in terms of l′—equation (10)
becomes

v(l′) = (1 +
√

l′)1/2[E(m(l′)) −
√

l′K(m(l′))]. (11)

Equation (29) in [10] provides the further result:

dv/dy = −(3/2)y(1 + y)−1/2K(m(y)). (12)

Noting that dy/dl′ = 1/(2
√

l′), we obtain

dv/dl′ = −(3/4)(1 +
√

l′)−1/2K(m(l′)). (13)

A further differentiation with respect to l′ then gives

d2v/dl′2 = −(3/16)(1 +
√

l′)−1/2

[
4

dK

dl′
− K√

l′(1 +
√

l′)

]
. (14)

From equation (27) in [10], we have

dK/dm = [E − (1 − m)K]/2m(1 − m). (15)

1 We thank an anonymous referee, for an earlier submission, for pointing this out.
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From (3)

m(l′) = (1 −
√

l′)/(1 +
√

l′), (16)

dm/dl′ = −1/[(
√

l′)(1 +
√

l′)2]. (17)

Using (16) and then (17) to put dK/dm in terms of l′, we obtain

dK/dm = (1 +
√

l′)E − 2
√

l′(1 +
√

l′)K

4
√

l′(1 − √
l′)

, (18)

dK/dl′ = − (1 +
√

l′)E − 2
√

l′K
4l′(1 − l′)

. (19)

Substitution of (19) into (14) then yields

l′(1 − l′)d2v/dl′2 = (3/16)(1 +
√

l′)−1/2[(1 +
√

l′)E − 2(
√

l′)K +
√

l′(1 −
√

l′)K],

l′(1 − l′) d2v/dl′2 = (3/16)v. (20)

This shows that v is a particular solution of ODE (7).

3. Boundary conditions

We require the boundary conditions that v(l′) and dv/dl′ satisfy at l′ = 0. It is well known
in CFE theory that v(0) = 1. However, dv/dl′ becomes infinite as l′ → 0, so the boundary
condition on dv/dl′ has to take the slightly unusual form that ‘dv/dl′ becomes infinite in the
correct way’. We develop both conditions formally from a result originally proved by Cayley
[17] in 1876, via three lemmas.

Lemma 1. As l′ approaches zero from above, the function K(m(l′)) is given by

K(m(l′)) = (3/2) ln 2 − (1/4) ln l′ + O(
√

l′). (21)

Proof. From (16), we have

(1 − m) = 2
√

l′

1 +
√

l′
.

Formula 17.3.26 in [8] is derived from Cayley’s result and states that

lim
m→1

K(m) = ln[4/
√

(1 − m)].

Hence

lim
l′→0

K(m(l′)) = lim
l′→0

ln

⎡
⎣4

√
1 +

√
l′

2
√

l′

⎤
⎦ = lim

l′→0
[(3/2) ln 2 − (1/4) ln l′ + O(

√
l′)],

as required. �

We have thus proved a Cayley-type result for K as a function of l′. This result is key to
deriving the series expansion for v.

Lemma 2. v(0) = 1.

Proof. Using lemma 1, we find that, in the limit of small l′, the term involving K(m(l′)) in
definition (11) takes the form

− lim
l′→0

[(1 +
√

l′)1/2
√

l′[(3/2) ln 2 − (1/4) ln l′]] = 0.

5
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When l′ = 0, then m = 1, and the term in E(m(l′)) in (11) reduces to

E(m = 1) =
∫ π/2

0
cos φ dφ = 1.

It follows that v(0) = 1. This is a well-known result in CFE theory, but for completeness we
have given formal proof here. �

Lemma 3.

lim
l′→0

{dv/dl′ − (3/16) ln l′} = −(9/8) ln 2. (22)

Proof. From (13) and (21) we have, in the limit of small l′, that

dv

dl′
≈ −3

4

(
1 −

√
l′

2

) (
3

2
ln 2 − 1

4
ln l′

)
.

The limiting form for dv/dl′ in (22) follows. �

4. Derivation of the series expansion for v(l′)

Obviously, (7) has two independent solutions. A complication is that different reference
sources on the hypergeometric equation give different forms for the second solution. There
are numerous legitimate forms, but one or two of the standard reference sources seem to
contain errors or misprints. In this paper we start from formulae 15.5.20 and 15.5.21 in [8];
these do yield what we know, from our earlier work, to be the correct result. These independent
solutions of (7) are denoted here by WA(l′) and WM(l′).

4.1. The Gauss hypergeometric series

The Gauss hypergeometric function F(p, q; r; l′) can be written as the series expansion

F(p, q; r; l′) = 1 +
pq

1!r
l′ +

p(p + 1)q(q + 1)

2!r(r + 1)
l′2 + · · · ≡

∞∑
i=0

(p)i(q)i

i!(r)i
l′i ≡

∞∑
i=0

ail
′i , (23)

where the Pochhammer symbol (or ‘rising factorial’) (p)i is defined by

(p)0 = 1, (p)i = p(p + 1) · · · (p + i − 1), (i � 1). (24)

There also exists a recurrence relation for the coefficients ai :

a0 = 1, ai+1 = (p + i)(q + i)

(i + 1)(r + i)
ai, (i � 0). (25)

For the values α = −3/4, β = −1/4, γ = 0 specified earlier, the parameters used in
chapter 15 of [8] have the values a = −3/4, b = −1/4,m = 1, z = l′. So, from formulae
there, the arguments of our function F(p, q; r; l′) have the values p = 1/4, q = 3/4, r = 2.
The summation index n in [8] will be replaced by i here, to avoid a clash with notation we
have used elsewhere [7].

4.2. First independent solution

Formula 15.5.20 in [8] thus yields

WA(l′) = l′F
(

1

4
,

3

4
; 2; l′

)
= l′

∞∑
i=0

ail
′i , (26)

a0 = 1, ai+1 = (1/4 + i)(3/4 + i)

(i + 1)(2 + i)
ai = i(i + 1) + (3/16)

(i + 1)(i + 2)
ai = 16i(i + 1) + 3

16(i + 1)(i + 2)
ai . (27)

6
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Alternatively, an explicit expression for ai(i � 1) can be obtained as follows. From the
definition of the Pochhammer symbol, we find that (2)i = (i + 1)! and

(
1

4

)
i

(
3

4

)
i

=

i terms︷ ︸︸ ︷[
1

4
· 5

4
· 9

4
· · · 4i − 3

4

]
·

i terms︷ ︸︸ ︷[
3

4
· 7

4
· 11

4
· · · 4i − 1

4

]

= 1 · 3 · 5 · · · (4i − 1)

24i
= (4i − 1)!

24i (2i − 1)!22i−1
.

Hence, we find

ai = (4i − 1)!

26i−1i!(i + 1)!(2i − 1)!
, (i � 1). (28)

The first three values of ai are a0 = 1, a1 = 3/32, a2 = 35/1024, so the lowest terms of the
series for WA(l′) are

WA(l′) = l′
[

1 +
3

32
l′ +

35

1024
l′2 + O(l′3)

]
. (29)

4.3. Second independent solution

Formula 15.5.21 in [8] yields

WM(l′) = l′lnl′F
(

1

4
,

3

4
; 2; l′

)
+ l′

∞∑
i=1

l′i
(1/4)i(3/4)i

(2)i i!
ki −

1∑
i=1

l′i
(i − 1)!(−1)i

(3/4)i(1/4)i
l′1−i , (30)

where ki is given in terms of the ψ-function [8, 16] by

ki = ψ(i + 1/4) − ψ(1/4) + ψ(i + 3/4) − ψ(3/4) − ψ(i + 2) + ψ(2) − ψ(i + 1) + ψ(1),

(31)

ψ(x) = d

dx
ln	(x), (32)

	(x) =
∫ ∞

0
tx−1 e−t dt. (33)

The form of (30) is easily simplified. (i) The hypergeometric function can be replaced by
its series expansion in terms of the coefficients ai , as above. (ii) The Pochhammer terms in
the first summation are part of the definition of ai . Further, (31) allows us to define k0 = 0,
and make the lower limit in this summation i = 0. (iii) The second summation consists of a
single term, which has the value −16/3. So (30) becomes

WM(l′) = 16/3 + l′lnl′
∞∑
i=0

ail
′i + l′

∞∑
i=0

aiki l
′i . (34)

Using the property [8, 16] that ψ(x + 1) = ψ(x) + 1/x, which is valid for all positive
values of x and for negative non-integral values of x [16], we have

ki+1 = ki + (i + 1/4)−1 + (i + 3/4)−1 − (i + 1)−1 − (i + 2)−1. (35)

So we obtain the recurrence formula (for i � 0)

k0 = 0, ki+1 = ki +
32i2 + 58i + 23

(4i + 1)(4i + 3)(i + 1)(i + 2)
. (36)

The first three values of ki are 0, 23/6, 153/35, so the lowest terms in the series expansion for
WM(l′) are

WM(l′) = 16

3
+ l′

[
23

64
l′ +

153

1024
l′2 + O(l′3)

]
+ l′ ln l′

[
1 +

3

32
l′ +

35

1024
l′2 + O(l′3)

]
. (37)

7
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4.4. Derivation of v(l′) as a particular solution

The particular solution v(l′) takes the form v(l′) = AMWA + CMWM, where AM and CM are
constants to be determined. (These constants are different from those we have used elsewhere,
because we are now using the form in [8] for the second independent solution.) In terms of
these constants, the lowest terms of the expansions for v(l′) and dv/dl′ are

v(l′) = AMl′ + CM[16/3 + l′ ln l′] + O(l′2), (38)

dv/dl′ = AM + CM[1 + ln l′] + O(l′). (39)

The boundary condition v(0) = 1 yields CM = 3/16. Condition (22) then yields

−9

8
ln 2 = lim

l′→0

{
dv

dl′
− 3

16
ln l′

}
= AM +

3

16
. (40)

So AM = −(9/8) ln 2 − 3/16, and the series expansion for v(l′) takes the form

v(l′) = 1 +
∞∑
i=0

ail
′i+1

[
−9

8
ln 2 +

3

16
(ki − 1) +

3

16
ln l′

]
. (41)

The lowest few terms of this series are

v(l′) = 1 −
(

9

8
ln 2 +

3

16

)
l′ −

(
27

256
ln 2 − 51

1024

)
l′2 −

(
315

8192
ln 2 − 177

8192

)
l′3 + O(l′4)

+ l′ ln l′
[

3

16
+

9

512
l′ +

105

16 384
l′2 + O(l′3)

]
. (42)

This is the series originally discovered [11] using MAPLE, here written in terms of l′ rather
than y. Its further development, to obtain useful approximation formulae, is described in [7].

5. Discussion

For most of the last 50 years, the function v has been expressed in CFE theory as a function of
the Nordheim parameter y. In [11] was argued that, because the discovered series contained
no power terms in odd powers of y, it would be mathematically more natural to use l′[≡y2]
as the independent variable. The derivation here confirms that fractional powers of l′ do not
appear in the mathematically correct expansion for v(l′), but that terms in ln l′ are an intrinsic
part of it. As discussed in [7], using l′ in the mathematics means that the natural parameter to
use in related physical discussions is the scaled barrier field f .

Formulae such as (42) and (6) cannot easily be derived by simple Taylor expansion
methods, because such methods do not generate terms in ln l′. It follows that, for the SN
barrier, simple Taylor-expansion methods do not work well: for the exponent correction
factor, it is not easy to use them to generate good approximate formulae that are valid for the
whole range 0 � l′ � 1. This conclusion may also be applicable to tunnelling barriers of
other shapes.

The algebraic manipulation package MAPLE played a crucial role in stimulating this
work, because the MAPLE result [11] drew attention to the existence and form of the series
expansion for v, thus providing a result to aim for. Derivation of the v(l′) expansion by finding
series expansions for K(l′) and E(l′), and then inserting them into (11), proved excessively
laborious if performed by hand [7], even after we had found the Cayley forms [17] for the
expansions of K(m) and E(m). So we looked for a mathematical alternative.

Much of sections 3 and 4 could, in principle, have been written many years ago, but there
was no incentive. The analysis has been made readily achievable, rather than so complex as
to be unlikely to happen, by the relatively recent introduction of reliable computer algebra

8
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packages. Perhaps, overall, it is not entirely surprising that getting a well-proven series
expansion/definition for v in place has taken nearly 80 years, measured from Nordheim’s
original [2] (incorrect [3]) attempt to derive an exponent correction factor for the SN barrier.

This derivation will, we think, bring closure to the particular mathematical analysis of
CFE, based on the simple-JWKB approximation, that was initiated by Nordheim in late 1928.
We hope that our derivation might also be able to serve as a prototype for the treatment of
other barrier models, particularly for realistic models for the potential energy variation above
sharply curved emitters. The keys, in each case, would be to find an ODE that the tunnelling-
exponent correction function satisfies, and a suitable formulation of the boundary conditions.
It remains to be established whether this is mathematically possible.
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